Artículos Técnicos

La Ley de Ohm con ejemplos prácticos

George Simon Ohm, formuló en 1827 la que se conoce como Ley de Ohm. Posiblemente una de las leyes fundamentales de la electrónica.

Primero definió matemáticamente las tres magnitudes físicas principales de la electrónica:

  • Voltaje (o Diferencia de Potencial): Representa la “fuerza que tiene la energía eléctrica” entre los polos positivo y negativo. Es similar a la que existe entre los polos de los imanes, en los que las fuerzas de atracción y repulsión son invisibles pero están presentes. La fuerza representada por el voltaje impulsa la electricidad por los conductores y componentes electrónicos de un circuito, haciéndolo funcionar. Se mide en Voltios.
  • Intensidad (o Corriente): Representa el flujo de energía eléctrica durante un determinado período de tiempo, es decir, la “velocidad con que circula la energía eléctrica”. En un circuito electrónico esta velocidad es variable, ya que para funcionar necesita que por algunos de sus componentes la energía circule con más rapidez que por otros. Se mide en Amperios.
  • Resistencia: Representa la “oposición al paso de la energía eléctrica”. Sirve para regular la corriente y el voltaje según lo requiera cada componente de un circuito electrónico. Libera la energía sobrante en forma de calor (Efecto Joule). Se mide en Ohmios.

En el símil hidráulico de la siguiente figura, el Voltaje (V) vendría representado por la diferencia de Altura del agua, la Resistencia (R) por el Ancho del tubo, y la Corriente (I) por el Caudal del agua que sale.

La Ley de Ohm relaciona estas tres magnitudes físicas, siendo su enunciado el siguiente:

La Corriente en un circuito eléctrico varía de manera directamente proporcional a la Diferencia de Potencial aplicada, e inversamente proporcional a una propiedad característica del circuito que llamamos Resistencia.

O sea, que un aumento del Voltaje (mayor Altura de agua) o disminución de la Resistencia (tubo más Ancho), provoca un aumentando proporcional de la Corriente eléctrica (mayor Caudal de agua)

Su formulación matemática es:

La ley de Ohm se aplica a la totalidad de un circuito o a una parte del mismo. Analicemos la parte del circuito que analicemos, siempre se cumplirá.

Reforcemos los conocimientos adquiridos con el siguiente ejemplo: Imagina que tienes dos mangueras unidas, una más ancha que la otra y conectadas a una llave de agua.

  • El Voltaje sería la fuerza con la que sale el agua de la llave.
  • La Corriente sería la velocidad del agua al pasar por el interior de cada una de las mangueras.
  • La Resistencia sería la oposición al paso del agua en la pieza de unión y por la diferencia de grosor entre las dos mangueras.

En este símil hidráulico, la corriente sería continua, ya que el agua va siempre en el mismo sentido. Si el agua cambiara su dirección de circulación cada cierto tiempo, sería equivalente a la circulación de corriente alterna.

Solo a título informativo, comentar que para el análisis de circuitos de corriente alterna se sustituye la Resistencia (R) por la Impedancia (Z), que tiene en cuenta los desfases entre Voltaje e Intensidad y los efectos de los campos electromagnéticos producidos en los componentes electrónicos del circuito. Pero lo más normal en electrónica básica es analizar los circuitos en corriente continua o aplicar simplificaciones que nos permitan analizarlos como si lo fueran.

Y antes de entrar en materia, una curiosidad…, ¿cuántos electrones, como unidad de carga eléctrica mínima, se están moviendo cuando decimos que la corriente que circula es de 1 Amperio?

Pues, medido experimentalmente en laboratorio, nada menos que aproximadamente 6,241509×1018 electrones cada segundo.

A la carga eléctrica de estos más de 6 trillones de electrones se la llama Culombio. Por lo tanto:

1 Amperio = 1 Culombio x 1 Segundo

De ella deriva el Faradio como unidad para medir la capacidad de almacenar carga de los condensadores. O los A.h (Amperios-Hora) para medir la cantidad de electricidad que puede almacenar una batería. Con esta información, ya puedes averiguar cuantos electrones de más se almacenan en cualquier dispositivo (carga negativa), o cuanta falta de electrones (carga positiva) acumula. En el símil hidráulico sería el equivalente a la cantidad de agua acumulada en el depósito de agua.

Seguimos… De la ecuación de la Ley de Ohm que vimos anteriormente, podemos despejar los valores de Voltaje y de Resistencia. De esta manera, conocidos o medidos dos de ellos, podremos calcular el tercero.

Aunque la fórmula no es difícil de recordar, existe una regla nemotécnica conocida como el Triángulo de la Ley de Ohm que facilita su uso.

Triángulo de la Ley de Ohm

En este triángulo, solo hay que tapar la variable que queremos calcular y aparecerán las otras dos variables con la posición que ocupan en la ecuación que corresponda.

Tal vez lo veas más claro en la siguiente animación:

Veamos ahora como aplicar la ley en un circuito sencillo:

Si sabemos que el voltaje de la alimentación eléctrica es de 12 voltios y la resistencia del circuito es de 10 ohmios (el ohmio es la unidad de resistencia eléctrica y se representa por la letra griega Ω), aplicando la Ley de Ohm:

I = V / R = 12v / 10Ω = 1,2 Amperios

En un circuito con varias resistencias en serie. Si sabemos el voltaje de alimentación, primero calcularemos la resistencia equivalente total sumando todas las resistencias que se encuentran en serie. Con este valor, aplicamos la Ley de Ohm como en el ejemplo anterior, y conocida la corriente que circula por el circuito, podemos calcular el voltaje en cada una de las resistencias, cuya suma, si no nos hemos equivocado, será el voltaje de alimentación:

En un circuito con resistencias en paralelo, conocemos el voltaje en los extremos de cada resistencia, por lo que podremos calcular de manera sencilla la corriente que circula por cada una de ellas. Y si calculamos la resistencia equivalente total aplicando las formulas de calculo para resistencias en paralelo, podremos comprobar que la corriente que circula por esta resistencia equivalente total es igual a la suma de las corrientes anteriormente calculadas que circula por cada una de las resistencias.

En un circuito mixto de resistencias conectadas en serie y en paralelo, aplicaremos lo ya aprendido, pero dividiendo el circuito en subcircuitos de resistencias en función de cómo estén conectadas.

Ahora ya puedes probar con circuitos reales de resistencias si George Simon Ohm estaba en los cierto y los valores que calculemos aplicando su fórmula coinciden con los que midamos. Pero antes, es muy IMPORTANTE tener en cuenta otro factor que completa la definición del circuito y los valores de sus resistencias. Estoy hablando de la Potencia eléctrica consumida en el circuito, que en el caso de las resistencias se transforma íntegramente en calor.

Por lo tanto:

W (watios) = V (voltios) x I (amperios)

Y aplicando la Ley de Ohm, podemos integrar la potencia en el siguiente gráfico que facilita la selección de la fórmula que necesitemos aplicar.

Así, por ejemplo, en el circuito más sencillo que analizamos anteriormente con una sola resistencia, su potencia deberá ser de al menos:

W = V x I = 12v x 1,2A = 120 W

Como seguramente no dispongamos de ninguna resistencia de esa potencia, y además sería muy voluminosa, lo mejor será utilizar para las pruebas resistencias de más de 1000 Ω = 1 KiloOhmio = 1 KΩ, de manera que en el ejemplo anterior:

W = V x I = V x  V / R  = V2 / R = 122 / 1000 = 0,144 W

Utilizando una resistencia de 1 KΩ y al menos 1/4 W (0,250 W), las mediciones y cálculos serían los siguientes:

Será necesario realizar ese mismo cálculo de potencia para cada una de las resistencias que empleemos en los circuitos reales que montemos para practicar.

Dependiendo de la utilidad que se le desee dar, existen diferentes tipos o familias de resistencias electrónicas.

Por cierto, que la unidad de resistencia eléctrica sea el Ohmio no es casualidad, recibe este nombre como homenaje a George Simon Ohm.

Si quieres prácticar un poco más por tu cuenta, puedes descargar el siguiente documento de ejercicios resueltos y resumen de fórmulas (Formato PDF / 10 páginas / 689KB). Descargar

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Botón volver arriba